([RRE

.
Traffic Light Controller

Basic sequence controller and FSM version

SR B

-
Contents

o UK traffic light sequence
o Building a controller with Node-Red
o Practical work

o Finite State Machines - FSM

o Building a controller with Node-Red (FSM)

0 Conclusion

UK traffic light sequence
0 RED means STOP

o RED and means get ready to GO
i I

[on its own means get ready to STOP

L
0 GREEN means GO

e
Build your controller using Node-Red

A
Red ON L)

.>:f': fwemos45/gpio/14
| RedOFF)

0 Some extra parts

you might need
]

[Yeliow ON
,.>::: fwemos4s/gpio/12 = . o
[velow OFF ‘“ [flgger every . seconds v

e
delay1s ()

o £
[Green ON) T]
’>::: /wemos45/gpio/13
O L
[Green OFF @

- N
Trigger & -

Delay for 3 seconds

o And lots and lots of connecting WIRES

o
Inverter

One suggestion...

k[:][Trigger q: Turn ON Red
] delay3s [Turn ON Red and Yellow

delay3s [

Turn ON Green and furn OFF Red and Yellow

delay3s [Turn ON Yellow and turn OFF Green

delay3s (0 Turn ON Red and turn OFF Yeliow

Over to you to have a go...

-
End of part one

o You have a few minutes to build your ‘flow’

o How did it go?

o Did you get it to work?

o Was the wiring easy to do?
o Does it look messy?

Finite State Machines - FSM

o A situation or product that has a number of
unique states and paths between them

o This method can be used to ‘program’ the
product as it makes it easier (to understand)

-
Examples of Finite State Machine

o Atorch or light switch

o Awashing machine

o A dishwasher

o A microwave oven

o A'hole in the wall’ cash machine
o And loads of other products

o And of course... Atraffic light controller

A very simple two state FSM

o Atorch or light switch

Button Pressed

State 1 State 2
Torch Off Torch On

Button Pressed

0 FSM has two states

0 FSM has two paths or transitions

UK traffic light sequence

o How many unique states does it have?

o How many transitions does it have?

A simple four state FSM

red

amber ‘ . red & amber
@
green

o One state is normally designated the ‘starting’ point
o Each state iIs numbered, starting from SO

0 A state-counter is used to define which state the
state machine iIs in

FSM for our traffic light controller
o SO (this could also be the starting point)

red

® S0

sz~ \.s1

amber . ’ red & amber

e

green

0 It 1Is assumed the transition from state to
state happens every 3 seconds

.
State Counter for our FSM

------ Outputs - - - - - -
0 SO 0O RED
0 S1 1 RED YELLOW
0 S2 2 GREEN
0 S3 3 YELLOW

Simple decimal counter

-
What the state machine has to do

0 Increment or Reset the State Counter

o Check if it has reached state S3
= If it has, then reset it to state SO
m state _counter =0
= Otherwise increment the state counter
m state_counter = state_counter +1

0 Decode the states

o Turn RED on If state Is: SOorSi1
o Turn Yellow on If state is;: S1 or S3

o Turn GREEN on If state Is: S2

.
Overview of the Node-Red flow

o Trigger the flow every 3 seconds

o Index the state counter

Decode RED light wemos24/gpio/14
[Trigger every 3 seconds & = — Index the State Counter T— Decode YELLOW light () /wemos24/gpio/12
Decode GREEN light | /WEMO0S24/gpio/13

o Decode the state counter

o Send command to node to drive LED

-
Increment the state_counter

O Trigger every 3 seconds & — Index the State Counter [—==
W Name Index the State Counter &~
A Function

1 war fsm state = flow.get{"state counter") || 0;

2

3 if (fsm state > Z)

4 {fsm state = 0;}

2 el=e

b {fsm state = fsm state + 1;}

-

8 flow.set("state counter”, fsm state);

8 msg.paylcocad = fsm_state;
10 node.status({text:"State counter = " + f=zm state});

12 return msg;

o Increment or reset the state counter

-
Decode value of the state counter

o This example is for the RED light

w— ': Decode RED light [=1 /wemos24/gpio/14
l ' '.cmwwﬁm
W Name Decode RED light
A Function
1 war fsm state = flow.get("state counter");
2
3 if (fsm state === C fsm state == 1)
q - imsg.payload = 1;
L }
b
T el=se
8- imsg.payload = 0;
g« }
10

11 return msg;

o You can work out the Yellow and Green lights

End of part two

o Your chance to create a simple FSM

o Over to you to have a go...

L
Conclusion

0 FSM useful method to visualise a ‘machine’
o FSM can be ‘programmed’ in Node-Red

o You will meet many FSMs in your working life

