
Traffic Light Controller

Basic sequence controller and FSM version

 UK traffic light sequence

 Building a controller with Node-Red

 Practical work

 Finite State Machines - FSM

 Building a controller with Node-Red (FSM)

 Conclusion

Contents

 RED means STOP

 RED and AMBER means get ready to GO

UK traffic light sequence

 GREEN means GO

 AMBER on its own means get ready to STOP

 Some extra parts

you might need

Build your controller using Node-Red

 And lots and lots of connecting WIRES

One suggestion…

Over to you to have a go…

 You have a few minutes to build your ‘flow’

 How did it go?

 Did you get it to work?

 Was the wiring easy to do?

 Does it look messy?

End of part one

Finite State Machines - FSM

 A situation or product that has a number of

unique states and paths between them

 This method can be used to ‘program’ the

product as it makes it easier (to understand)

Examples of Finite State Machine

 A torch or light switch

 A washing machine

 A dishwasher

 A microwave oven

 A ‘hole in the wall’ cash machine

 And loads of other products

 And of course… A traffic light controller

 A torch or light switch

 FSM has two states

 FSM has two paths or transitions

A very simple two state FSM

UK traffic light sequence

 How many unique states does it have?

 How many transitions does it have?

A simple four state FSM

 One state is normally designated the ‘starting’ point

 Each state is numbered, starting from S0

 A state-counter is used to define which state the
state machine is in

 S0 (this could also be the starting point)

FSM for our traffic light controller

S1

S2

S3

S0

 It is assumed the transition from state to

state happens every 3 seconds

 S0 0 RED

 S1 1 RED YELLOW

 S2 2 GREEN

 S3 3 YELLOW

State Counter for our FSM

- - - - - - Outputs - - - - - -

Simple decimal counter

 Increment or Reset the State Counter

Check if it has reached state S3

 If it has, then reset it to state S0

 state_counter = 0

Otherwise increment the state counter

 state_counter = state_counter + 1

 Decode the states

 Turn RED on if state is: S0 or S1

 Turn Yellow on if state is: S1 or S3

 Turn GREEN on if state is: S2

What the state machine has to do

 Trigger the flow every 3 seconds

 Index the state_counter

Overview of the Node-Red flow

 Decode the state_counter

 Send command to node to drive LED

 Increment or reset the state_counter

Increment the state_counter

 This example is for the RED light

Decode value of the state_counter

 You can work out the Yellow and Green lights

 Your chance to create a simple FSM

End of part two

 Over to you to have a go…

 FSM useful method to visualise a ‘machine’

 FSM can be ‘programmed’ in Node-Red

 You will meet many FSMs in your working life

Conclusion

